CS 205M: Theoretical Foundations of Computer Science.

Khushraj Nanik Madnani

Lecture 1: Instructor and Teaching Assistants

- Khushraj Nanik Madnani (instructors):
- Teaching Assistants (yet to be decided):
 - · Ritu Kumari (Ph.D. candidate),
 - · Archana K R. (Ph.D. candidate),
 - Kethireddy Mahendranath Reddy (M. Tech. 1),
 - Vishwa Pranav Reddy Bobbala (M. Tech. 1).

About the Course

Discrete Mathematics 50%

Formal Languages and Automata Theory 50%

Discrete Mathematics (first half)

- •Sets, Functions, Relations, Partial Orders, Recurrences, Summations;
- ·Counting, Generating functions, asymptotics;
- · Elementary Logic and Proof Techniques.
- · Graphs: basic concepts
- ·Group Theory, symmetries (if time permits).

Formal Languages and Automata Theory

- ·Alphabets, Languages;
- •Regular Languages: Finite State Automata, Regular Expressions;
- •Context Free Languages: Pushdown Automata, Context Free Grammars;
- · Recursively Enumerable Languages: Turing Machines;
- •Introduction to Computability and Complexity (if time permits).

Exam Schedule

- •5% lecture attendance, 95% exams;
- · Quiz 1 (within a week before midsem);
- · Mid Sem;
- · Quiz 2;
- · Quiz 3 (within a week before endsem);
- End Sem,
- •25% will be evaluated externally.

Course Evaluation

- 5% lecture attendance; 25% quizzes (best of 2 out of 3), 5% research presentation;
- 20% midsem; 45% endsem.
- Potluck grading 15%.
 - Group of 5 will be formed after quiz 1 scores. Let the individual marks after endssems be A, B, C, D, E.
 - A' = A 0.15 *A, ..., E' = E 0.15 * E.
 - X = 0.15 * (A+B+C+D+E)/5
 - A_new = A'+X, B_new = B'+X, . . . , E_new = E' + X.

Conclusion

So its in your interest that your group members are also performing well and attending classes regularly.

Grading

Partially Relative Grading. The absolute component as follows:

- •Anyone getting 90% or above will get an AA or above.
- •Anyone getting 80% or above will get AB or above.
- •Anyone getting 36% or above will get CC or above.

Sets - revision.

- Intersection, Union, subset, superset, powerset.
- · Relations introduction.
- Functions.
- · Cardinality of Sets, Finite vs. Infinite sets.
- Sequences and Summation,
- · Will be revisited next week.

Lecture 2: Introduction to Sets.

- A set is a collection of distinct objects.
- Denoted using curly braces: A = {1, 2, 3}
- Elements are unordered and no duplicates.
- Membership notation: $x \in A$, $y \notin A$

Application of Set Theory

- Databases (SQL uses set operations).
- Programming (Python sets, Java HashSet).
- · Logic and proof theory.
- Relations and functions.

How to Define a Set?

- · Roster Method: Explicit listing: issues with this?
 - $A = \{1, 2, 3, 4\}$
- ·Set-builder Notation: More precise, and unambiguous.
 - $B = \{x \mid x \text{ is an even number, } x < 10\}$

Types of Sets

- Finite and Infinite Sets
 - $A = \{1, 2, 3\}$ (finite), $N = \{0, 1, 2, 3, ...\}$ (infinite)
- Empty Set: $\emptyset = \{\}$, Subset: $A \subseteq B$ every element of A is included in B, Superset $B \supseteq A$: vice versa. Universal Sets?
- Proper/Strict Subset: $A \subset B$ means $A \subseteq B$ and $A \neq B$,

Proper/Strict Superset $A \supset B$ means $A \supseteq B$ and $A \neq B$

Elementary Set Opertations.

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Difference: $A B = \{x \mid x \in A \text{ and } x \notin B\}$
- Complement: $A' = \{x \mid x \notin A\}$ (w.r.t. a universal set)

Venn Diagram

· Visual Representation of sets and its operations: On board,

Properties of Set Operations

- Commutative: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- · Associative: (A U B) U C = A U (B U C)
- · Distributive: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
- De Morgan's Laws:

$$\neg (A \cup B) = \neg A \cap \neg B, \ \neg (A \cap B) = \neg A \cup \neg B$$

Cartesian Product.

•
$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

• Example:

•
$$A = \{1, 2\}, B = \{x, y\}$$

• $A \times B = \{(1, x), (1, y), (2, x), (2, y)\}$

Some Interesting Puzzles/Observations.

- Russel's paradox issues with existing set theory on board.
- Comparing infinities.
- Behind which door is the treasure. A lair and a truthful person.
- Paradox examples escaping punishment.
- The Hydra.

Elementary Logic

· Propositional Logic: Logical Operators, truth table,

equivalence, rules of inference.

· First Order Logic.